1(i) Subst	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -8 - 3\lambda \\ -2 \\ 6 + \lambda \end{pmatrix}$	B1	
54050	$2(-8 - 3\lambda) - 3(-2) + 6 + \lambda = 11$	M1	
$\uparrow \uparrow$	$-16 - 6 \lambda + 6 + 6 + \lambda = 11$ 5 $\lambda = -15$, $\lambda = -3$ So point of intersection is (1, -2, 3)	A1 A1ft [4]	
(ii)	Angle between $\begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}$	B1	
	$\cos \theta = \frac{2 \times (-3) + (-3) \times 0 + 1 \times 1}{\sqrt{14}\sqrt{10}}$	M1	allow M1 for a complete method only for any vectors
⇒	= (-)0.423 acute angle = 65°	A1 A1 [4]	

2	(i)	$\overline{\mathbf{A}}\overline{\mathbf{B}} = \begin{pmatrix} -2\\ -1\\ -1 \end{pmatrix}, \overline{\mathbf{A}}\overline{\mathbf{C}} = \begin{pmatrix} -1\\ -11\\ 3 \end{pmatrix}$	B1 B1 [2]	
	(ii)	$\mathbf{n}.\overline{\mathbf{A}}\overline{\mathbf{B}} = \begin{pmatrix} 2\\-1\\-3 \end{pmatrix}, \begin{pmatrix} -2\\-1\\-1\\-1 \end{pmatrix} = -4 + 1 + 3 = 0$	M1 E1	scalar product
		$\mathbf{n}.\overline{\mathbf{A}}\vec{\mathbf{C}} = \begin{pmatrix} 2\\-1\\-3 \end{pmatrix} \begin{pmatrix} -1\\-11\\3 \end{pmatrix} = -2 + 11 - 9 = 0$	E1	
		\Rightarrow plane is $2x - y - 3z = d$	M1	
		$x = 1, y = 3, z = -2 \Rightarrow d = 2 - 3 + 6 = 5$ $\Rightarrow \text{ plane is } 2x - y - 3z = 5$	A1 [5]	

3(i) Normal vectors $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$	B1	
Angle between planes is θ , where $\cos \theta = \frac{2 \times 1 + (-1) \times 0 + 1 \times (-1)}{\sqrt{2^2 + (-1)^2 + 1^2} \sqrt{1^2 + 0^2 + (-1)^2}}$ $= 1/\sqrt{12}$ $\Rightarrow \theta = 73.2^\circ \text{ or } 1.28 \text{ rads}$	M1 M1 A1 [4]	scalar product finding invcos of scalar product divided by two modulae
(ii) $\mathbf{r} = \begin{pmatrix} 2\\0\\1 \end{pmatrix} + \lambda \begin{pmatrix} 2\\-1\\1 \end{pmatrix}$ $= \begin{pmatrix} 2+2\lambda\\-\lambda\\-\lambda \end{pmatrix}$	B1	
$\Rightarrow 2(2+2\lambda) - (-\lambda) + (1+\lambda) = 2$ $\Rightarrow 5+6\lambda = 2$ $\Rightarrow \lambda = -\frac{1}{2}$ So point of intersection is $(1, \frac{1}{2}, \frac{1}{2})$	M1 A1 [4]	

4 (i) Plane has equation $x - y + 2z = c$	B1	x - y + 2z = c
$(\mathbf{A}, 1, 4), 2 + 1 + 8 = c$	M1	finding c
$\Rightarrow c = 11.$	A1	
(ii) $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 7+\lambda \\ 12+3\lambda \\ 9+2\lambda \end{pmatrix}$	M1	
$\Rightarrow 7 + \lambda - (12 + 3\lambda) + 2(9 + 2\lambda) = 11$ $\Rightarrow 2\lambda = -2$	M1	ft their equation from (i)
$\Rightarrow \lambda = -1$	A1	ft their $x-y+2z=c$
Coordinates are (6, 9, 7)	A1	cao
	[7]	

	5 (i) AE = $\sqrt{(15^2 + 20^2 + 0^2)} = 25$	M1 A1 [2]	
	(ii) $\overline{AE} = \begin{pmatrix} 15\\ -20\\ 0 \end{pmatrix} = 5 \begin{pmatrix} 3\\ -4\\ 0 \end{pmatrix}$	M1	Any correct form
	Equation of BD is $\mathbf{r} = \begin{pmatrix} -1 \\ -7 \\ 11 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -4 \\ 0 \end{pmatrix}$	A1	or $\mathbf{r} = \begin{pmatrix} -1 \\ -7 \\ 11 \end{pmatrix} + \lambda \begin{pmatrix} 15 \\ -20 \\ 0 \end{pmatrix}$
	$BD = 15 \Longrightarrow \lambda = 3$ $\Longrightarrow D \text{ is } (8, -19, 11)$	M1 A1cao [4]	$\lambda = 3 \text{ or } 3/5 \text{ as appropriate}$
	(iii) At A: $-3 \times 0 + 4 \times 0 + 5 \times 6 = 30$ At B: $-3 \times (-1) + 4 \times (-7) + 5 \times 11 = 30$ At C: $-3 \times (-8) + 4 \times (-6) + 5 \times 6 = 30$ Normal is $\begin{pmatrix} -3\\4\\5 \end{pmatrix}$	M1 A2,1,0 B1 [4]	eq:one-state-of-state
	(iv) $\begin{pmatrix} 4\\3\\5 \end{pmatrix} \overrightarrow{AE} = \begin{pmatrix} 4\\3\\5 \end{pmatrix} \begin{pmatrix} 15\\-20\\0 \end{pmatrix} = 60 - 60 = 0$ $\begin{pmatrix} 4\\3\\5 \end{pmatrix} \overrightarrow{AB} = \begin{pmatrix} 4\\3\\5 \end{pmatrix} \begin{pmatrix} -1\\-7\\5 \end{pmatrix} = -4 - 21 + 25 = 0$ $\Rightarrow \qquad \begin{pmatrix} 4\\3\\5 \end{pmatrix} \text{ is normal to plane}$	M1 E1	scalar product with one vector in plane = 0 scalar product with another vector in plane = 0
	Equation is $4x + 3y + 5z = 30$.	M1 A1 [4]	4x + 3y + 5z = 30 OR as * above OR M1 for subst 1 point in 4x+3y+5z=, A1 for subst 2 further points =30 A1 correct equation, B1 Normal
	(v) Angle between planes is angle between normals $\begin{pmatrix} 4 \\ 3 \\ 5 \end{pmatrix}$ and $\begin{pmatrix} -3 \\ 4 \\ 5 \end{pmatrix}$	M1	
Dhucic	$\cos \theta = \frac{4 \times (-3) + 3 \times 4 + 5 \times 5}{\sqrt{50} \times \sqrt{50}} = \frac{1}{2}$ $\Rightarrow \theta = 60^{\circ}$	M1 A1 A1 [4]	Correct method for any 2 vectors their normals only (rearranged) or 120° cao
riiysic	SATIUIVIALITS I ULUL.COM	Γ.]	