1(i) $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}-8-3 \lambda \\ -2 \\ 6+\lambda\end{array}\right)$	B1	
Substituting into plane equation: $\begin{array}{ll} & 2(-8-3 \lambda)-3(-2)+6+\lambda=11 \\ \Rightarrow & -16-6 \lambda+6+6+\lambda=11 \\ \Rightarrow & 5 \lambda=-15, \lambda=-3 \\ & \text { So point of intersection is }(1,-2,3) \end{array}$	M1 A1 A1ft [4]	
(ii) Angle between $\left(\begin{array}{l}2 \\ -3 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}-3 \\ 0 \\ 1\end{array}\right)$ $\begin{aligned} \cos \theta & =\frac{2 \times(-3)+(-3) \times 0+1 \times 1}{\sqrt{14} \sqrt{10}} \\ & =(-) 0.423 \end{aligned}$ $\Rightarrow \quad$ acute angle $=65^{\circ}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [4] } \end{aligned}$	allow M1 for a complete method only for any vectors

2	(i)	$\overrightarrow{\mathrm{A}} \overrightarrow{\mathrm{B}}=\left(\begin{array}{l}-2 \\ -1 \\ -1\end{array}\right), \overrightarrow{\mathrm{A}} \overrightarrow{\mathrm{C}}=\left(\begin{array}{l}-1 \\ -11 \\ 3\end{array}\right)$	$\begin{aligned} & \text { B1 B1 } \\ & \text { [2] } \end{aligned}$	
	(ii)	$\begin{aligned} & \text { n. } \overrightarrow{\mathrm{A}} \overrightarrow{\mathrm{~B}}=\left(\begin{array}{l} 2 \\ -1 \\ -3 \end{array}\right) \cdot\left(\begin{array}{l} -2 \\ -1 \\ -1 \end{array}\right)=-4+1+3=0 \\ & \mathbf{n} \cdot \overrightarrow{\mathrm{~A}} \overrightarrow{\mathrm{C}}=\left(\begin{array}{l} 2 \\ -1 \\ -3 \end{array}\right) \cdot\left(\begin{array}{l} -1 \\ -11 \\ 3 \end{array}\right)=-2+11-9=0 \\ & \Rightarrow \quad \text { plane is } 2 x-y-3 z=d \\ & x=1, y=3, z=-2 \Rightarrow d=2-3+6=5 \\ & \Rightarrow \quad \text { plane is } 2 x-y-3 z=5 \end{aligned}$	M1 E1 E1 M1 A1 [5]	scalar product

3(i) Normal vectors $\left(\begin{array}{l}2 \\ -1 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 0 \\ -1\end{array}\right)$
Angle between planes is θ, where

$$
\begin{aligned}
\cos \theta & =\frac{2 \times 1+(-1) \times 0+1 \times(-1)}{\sqrt{2^{2}+(-1)^{2}+1^{2}} \sqrt{1^{2}+0^{2}+(-1)^{2}}} \\
& =1 / \sqrt{ } 12 \\
\Rightarrow \quad \theta & \quad 73.2^{\circ} \text { or } 1.28 \mathrm{rads}
\end{aligned}
$$

(ii) $\mathbf{r}=\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)+\lambda\left(\begin{array}{l}2 \\ -1 \\ 1\end{array}\right)$

$$
=\left(\begin{array}{l}
2+2 \lambda \\
-\lambda \\
1+\lambda
\end{array}\right)
$$

$$
\Rightarrow \quad 2(2+2 \lambda)-(-\lambda)+(1+\lambda)=2
$$

$$
\Rightarrow \quad 5+6 \lambda=2
$$

$$
\Rightarrow \quad \lambda=-1 / 2
$$

So point of intersection is ($1,1 / 2,1 / 2$)
scalar product
finding invcos of scalar product divided by two modulae

A1
[4]

B1

M1

A1
A1
[4]

$\begin{aligned} & 4 \text { (i) Plane has equation } x-y+2 z=c \\ & (8 t y, 4), 2+1+8=c \\ & \Rightarrow c=11 . \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \end{array}$	$x-y+2 z=c$ finding c
(ii) $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}7+\lambda \\ 12+3 \lambda \\ 9+2 \lambda\end{array}\right)$	M1	
$\begin{aligned} & \Rightarrow \quad 7+\lambda-(12+3 \lambda)+2(9+2 \lambda)=11 \\ & \Rightarrow \quad 2 \lambda=-2 \end{aligned}$	M1	ft their equation from (i)
$\Rightarrow \quad \lambda=-1$	A1	ft their $x-y+2 z=c$
Coordinates are (6, 9, 7)	A1	

5 (i) $\mathrm{AE}=\sqrt{ }\left(15^{2}+20^{2}+0^{2}\right)=25$	M1 A1 [2]	
(ii) $\overrightarrow{\mathrm{AE}}=\left(\begin{array}{l} 15 \\ -20 \\ 0 \end{array}\right)=5\left(\begin{array}{l} 3 \\ -4 \\ 0 \end{array}\right)$ Equation of BD is $\mathbf{r}=\left(\begin{array}{l}-1 \\ -7 \\ 11\end{array}\right)+\lambda\left(\begin{array}{l}3 \\ -4 \\ 0\end{array}\right)$ $\begin{aligned} & \mathrm{BD}=15 \Rightarrow \lambda=3 \\ & \Rightarrow \mathrm{D} \text { is }(8,-19,11) \end{aligned}$	M1 A1 M1 A1cao [4]	Any correct form or $\quad \mathbf{r}=\left(\begin{array}{l}-1 \\ -7 \\ 11\end{array}\right)+\lambda\left(\begin{array}{l}15 \\ -20 \\ 0\end{array}\right)$ $\lambda=3$ or $3 / 5$ as appropriate
(iii) At A: $-3 \times 0+4 \times 0+5 \times 6=30$ At B: $-3 \times(-1)+4 \times(-7)+5 \times 11=30$ At C: $-3 \times(-8)+4 \times(-6)+5 \times 6=30$ Normal is $\left(\begin{array}{l}-3 \\ 4 \\ 5\end{array}\right)$	M1 A2,1,0 B1 [4]	One verification (OR B1 Normal, M1 scalar product with 1 vector in the plane, A1two correct, A1 verification with a point OR M1 vector form of equation of plane eg $\mathrm{r}=0 \mathrm{i}+0 \mathrm{j}+6 \mathrm{k}+\mu(\mathrm{i}+7 \mathrm{j}-5 \mathrm{k})+v(8 \mathrm{i}+6 \mathrm{j}+0 \mathrm{k})$ M1 elimination of both parameters A1 equation of plane B1 Normal *)
(iv) $\begin{aligned} & \left(\begin{array}{l} 4 \\ 3 \\ 5 \end{array}\right) \overrightarrow{A E}=\left(\begin{array}{l} 4 \\ 3 \\ 5 \end{array}\right) \cdot\left(\begin{array}{l} 15 \\ -20 \\ 0 \end{array}\right)=60-60=0 \\ & \left(\begin{array}{l} 4 \\ 3 \\ 5 \end{array}\right) \overrightarrow{A B}=\left(\begin{array}{l} 4 \\ 3 \\ 5 \end{array}\right)\left(\begin{array}{l} -1 \\ -7 \\ 5 \end{array}\right)=-4-21+25=0 \end{aligned}$ $\Rightarrow \quad\left(\begin{array}{l}4 \\ 3 \\ 5\end{array}\right)$ is normal to plane Equation is $4 x+3 y+5 z=30$.	M1 E1 M1 A1 [4]	scalar product with one vector in plane $=$ 0 scalar product with another vector in plane $=0$ $4 x+3 y+5 z=\ldots$ 30 OR as * above OR M1 for subst 1 point in $4 x+3 y+5 z=, A 1$ for subst 2 further points $=30$ A1 correct equation, B1 Normal
(v) Angle between planes is angle between normals $\left(\begin{array}{l}4 \\ 3 \\ 5\end{array}\right)$ and $\left(\begin{array}{l}-3 \\ 4 \\ 5\end{array}\right)$ $\cos \theta=\frac{4 \times(-3)+3 \times 4+5 \times 5}{\sqrt{50} \times \sqrt{50}}=\frac{1}{2}$ $\Rightarrow \quad \theta=60^{\circ}$ sAndMathsTutor.com	M1 M1 A1 A1 [4]	Correct method for any 2 vectors their normals only (rearranged) or 120° cao

